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Abstract

Neurodegenerative disorders, such as Alzheimer's disease (AD) and progressive forms

of multiple sclerosis (MS), can affect the brainstem and are associated with atrophy

that can be visualized by MRI. Anatomically accurate, large-scale assessments of

brainstem atrophy are challenging due to lack of automated, accurate segmentation

methods. We present a novel method for brainstem volumetry using a fully-

automated segmentation approach based on multi-dimensional gated recurrent units

(MD-GRU), a deep learning based semantic segmentation approach employing a con-

volutional adaptation of gated recurrent units. The neural network was trained on

67 3D-high resolution T1-weighted MRI scans from MS patients and healthy controls

(HC) and refined using segmentations of 20 independent MS patients' scans. Repro-

ducibility was assessed in MR test–retest experiments in 33 HC. Accuracy and

robustness were examined by Dice scores comparing MD-GRU to FreeSurfer and

manual brainstem segmentations in independent MS and AD datasets. The mean

%-change/SD between test–retest brainstem volumes were 0.45%/0.005 (MD-GRU),

0.95%/0.009 (FreeSurfer), 0.86%/0.007 (manually edited segmentations). Comparing

MD-GRU to manually edited segmentations the mean Dice scores/SD were:
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0.97/0.005 (brainstem), 0.95/0.013 (mesencephalon), 0.98/0.006 (pons), 0.95/0.015

(medulla oblongata). Compared to the manual gold standard, MD-GRU brainstem seg-

mentations were more accurate than FreeSurfer segmentations (p < .001). In the

multi-centric acquired AD data, the mean Dice score/SD for the MD-GRU-manual

segmentation comparison was 0.97/0.006. The fully automated brainstem segmenta-

tion method MD-GRU provides accurate, highly reproducible, and robust segmenta-

tions in HC and patients with MS and AD in 200 s/scan on an Nvidia GeForce GTX

1080 GPU and shows potential for application in large and longitudinal datasets.
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1 | INTRODUCTION

The brainstem (BS) is situated at the base of the cerebrum and forms

the anatomical link between brain and spinal cord. From cranial to

caudal, the BS consists of three substructures: midbrain (mesencepha-

lon; M), pons (P), and medulla oblongata (MO).

The BS is a vitally important and complex structure, containing

multiple scattered cranial nerve nuclei, white matter tracts for relaying

sensory and motor data to and from the brain and spinal cord, and

reticular nuclei including monoamine-producing nuclei with wide-

spread connections to all parts of the brain (Naidich et al., 2009;

Nieuwenhuys, 1985).

Several primary or secondary neurodegenerative diseases as for

example, Alzheimer's disease (AD; Grinberg et al., 2009), Parkinson's

disease (Grinberg, Rueb, Alho, & Heinsen, 2010), progressive supra-

nuclear palsy (Williams & Lees, 2009), multisystem atrophy (Ghorayeb

et al., 2002), amyotrophic lateral sclerosis (Warabi, Hayashi, Nagao, &

Shimizu, 2017) and multiple sclerosis (MS; Noseworthy, Lucchinetti,

Rodriguez, & Weinshenker, 2000), can affect the BS or its substruc-

tures. During these diseases, progressive neurodegeneration of BS

structures can result in dysphagia, dysarthria, autonomic dysfunction

and other symptoms that influence not only the patient's quality of

life but also survival (Grinberg et al., 2010; Kim et al., 2018).

One of the macroscopic hallmarks of neurodegeneration is tissue

loss (atrophy) that can be assessed and quantified by magnetic reso-

nance imaging (MRI) in vivo. Yet, while atrophy of the brain and spinal

cord has been extensively studied in neurodegenerative diseases by

MRI over the past decades, the BS has been less well investigated.

Challenges of BS imaging include the relatively small structure of the

BS and frequent artifacts in conventional MR imaging due to cerebro-

spinal fluid (CSF) or pulsatile blood flow (Herlihy et al., 2001; Tanaka,

Abe, Kojima, Nishimura, & Hayabuchi, 2000).

Moreover, the BS is anatomically less well demarcated compared

with other brain regions, especially at the level of the BS caudal bor-

der toward the spinal cord.

While still regarded as the gold standard, manual segmentations

provide high anatomic accuracy, however, are prone to intra- and

inter-rater bias. Several originally for brain segmentation designed

methods enable also automated BS segmentation (Akhondi-Asl &

Warfield, 2013; Fischl et al., 2002; Iglesias et al., 2015; Patenaude,

Smith, Kennedy, & Jenkinson, 2011). However, anatomic accurate

segmentations, especially the correct identification of the lower BS

border, are still a mayor challenge and limits the applicability of these

methods for atrophy assessments in clinical studies. Previous studies

suggested that the combination of automated segmentation and cor-

rective learning provides a more accurate segmentation of the BS

than automated segmentation alone (Wang, Ngo, Hessl, Hagerman, &

Rivera, 2016).

Building on multi-dimensional gated recurrent units (MD-GRU;

Andermatt, Pezold, & Cattin, 2016; Andermatt, Pezold, & Cattin,

2018), a recently developed deep learning based semantic segmenta-

tion approach, the objective of this study was to develop an accurate,

reliable and efficient BS segmentation method from T1-weighted

(T1-w) MRI images enabling improved quantification of BS volume

loss in the investigation of neurodegenerative diseases.

We report the reproducibility, accuracy, and robustness of this

novel method in segmentation of the BS and its substructures in

healthy controls (HC), MS, and AD patients.

2 | MATERIALS AND METHODS

2.1 | Imaging data

For algorithm training and refinement, assessments of accuracy and

reproducibility, several independent sets of 3D high-resolution T1w

MR imaging data (MPRAGE, all obtained on the same 1.5 T Magnetom

Avanto scanner [Siemens Healthineers, Erlangen, Germany] at the

Department of Radiology, University Hospital Basel) with identical

acquisition parameters were used in this study (see Figure 1 for an

overview). Briefly, acquisition parameters were TR = 2080 ms,

TI = 1,100 ms, TE = 3.1 ms, α = 15�, 160 sagittal slices, spatial resolu-

tion of 0.98 × 0.98 × 1mm3 (Bendfeldt et al., 2009; Weier et al.,

2014). In addition, reproducibility was also assessed in 22 data set

pairs that were obtained from one single Siemens 3 T Prisma scanner
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(acquisition parameters: TR = 2,700 ms, TI = 950 ms, TE = 5.03 ms,

α = 8�; spatial resolution of 1.0 × 1.0 × 1.0 mm3).

Written informed consent was obtained from all patients and

HC. The study has been approved by the local ethics committee.

2.1.1 | Algorithm training data set

For algorithm training, data sets from 50 patients of an ongoing

cohort study, with diagnosis of MS or clinically isolated syndrome

(CIS) according to McDonald et al. (2001) (mean age 46.3 years, SD

11.18, range 28–67 years, 66% women, median EDSS 3.5, IQR = 3.25)

and from 17 HC (mean age 30.1 years, SD 10.49, range 18–61 years,

29% women) were used.

2.1.2 | Algorithm refinement data set

For refinement of the algorithm parameters, 20 independent brain

MPRAGE data sets with identical acquisition parameters from 20 addi-

tional patients with MS or CIS from the same cohort (mean age

41.7 years, SD 10.84, range 28–63 years, 70% women, median EDSS

1.75, IQR = 1.5) were assessed.

2.1.3 | Accuracy data sets

For comparison of the automated refined MD-GRU segmentation

algorithm and the FreeSurfer segmentation approach with an

independent gold standard (exclusively manual segmentations),

20 independent data sets of patients with MS or CIS from the same

cohort (mean age 42.1 years, SD 12.42, range 21–65, 70% women,

median EDSS 2.0, IQR 1.5) were assessed.

Accuracy of the refined MD-GRU segmentation algorithm was

then additionally assessed in a larger dataset of 80 independent

brain MPRAGE images with identical acquisition parameters from

additional 80 patients with MS or CIS from the same cohort (mean

age 42.8 years, SD 11.27, range 21–65 years, 68% women, median

EDSS 2.5, IQR = 2.5) and compared to manually edited segmenta-

tions based on FreeSurfer presegmentations as described in “Man-

ual segmentations.”

2.1.4 | Reproducibility data set

For reproducibility assessments, T1w brain MRI data sets of 33 HC

(mean age 30.2 years, SD 9.02, range 20–56 years, 61% women) were

evaluated. These scans were acquired as a MR test–retest experiment

with identical acquisition parameters on identical scanners respec-

tively with repositioning between scans. Eleven data set pairs were

acquired on a 1.5 T Siemens Avanto scanner (Keshavan et al., 2016;

mean age 38.5 years, SD 10.02, range 24–56 years, 64% women),

22 independent data set pairs were obtained from a 3 T Siemens Pri-

sma scanner (mean age 26.1 years, SD 4.26, range 21–39 years, 59%

women).

F IGURE 1 Schematic figure of
(a) training and refinement and
(b) accuracy, reproducibility and
robustness assessment of the algorithm
[Color figure can be viewed at
wileyonlinelibrary.com]
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2.1.5 | Robustness data set

The robustness of the MD-GRU BS segmentation approach was

assessed using multicentric MPRAGE data sets (Siemens, 3 T) of

50 patients with AD (mean age 75.4 years, SD 8.55, range 56–90 years,

52% women) that were obtained from the Alzheimer's Disease Neuroim-

aging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was

launched in 2003 as a public-private partnership, led by Principal Investi-

gator Michael W. Weiner, MD. The primary goal of ADNI has been to

test whether serial magnetic resonance imaging (MRI), positron emission

tomography (PET), other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression of

mild cognitive impairment (MCI) and early Alzheimer's disease (AD). For

up-to-date information, see www.adni-info.org.

2.2 | Manual segmentations

Manually edited segmentations of the BS and its substructures were

used for algorithm training, refinement, and accuracy validation

against MD-GRU segmentations in MS and AD patients. Manually

edited BS segmentations were performed using the open source soft-

ware 3D Slicer 4.8.1 (www.slicer.org), based on presegmentations

generated by FreeSurfer (http://surfer.nmr.mgh.harvard.edu/; Iglesias

et al., 2015). We chose FreeSurfer for presegmentations due to its rel-

atively good reproducibility in BS segmentations compared to other

methods (Velasco-Annis, Akhondi-Asl, Stamm, & Warfield, 2018).

The manual editing process followed clear definitions. Particular

focus was put on the anatomically correct limitation of the midbrain

toward the epiphysis, and the cranio-caudal extension of the MO,

defined by the medullo-pontine sulcus and the bilateral exit of the first

spinal root (Figure 2, described in detail in Appendix A) and was per-

formed by two independent trained neurologists experienced in neuro-

imaging. Inter-rater reliability of the manual editing process was assessed

on the MR data sets of 10 MS patients from the same cohort by intra-

class correlation coefficients (ICC, two-way random, absolute agreement)

and coefficients of variation (COV = [maxVolume−minVolume]/meanVolume).

Due to the high ICCs (≥ 0.998 for the BS and all three substructures) and

low COVs (COVBS = 0.077%), all further manual edits were performed

by one rater only (for detailed information see Appendix C).

Exclusively manual segmentations were performed in a subset of

cases to generate a FreeSurfer independent gold standard and enable

an independent comparison between the automated segmentation

methods MD-GRU and FreeSurfer. Manual segmentation was

F IGURE 2 Illustrations of anatomical landmarks used in the manual segmentation of the mesencephalon, pons and medulla oblongata. Caudal
delimitation of the MO is defined as the bilateral exit of the first spinal root (white arrows) in axial slices. The pontomedullary sulcus marks the
cranial delimitation (white arrowheads). The pontomesencephalic junction is marked by the black arrow, the cranial delimitation of the
mesencephalon toward the pineal gland is shown by the black arrowhead
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performed using 3D Slicer followed clear anatomical definitions as

described in the Appendix B and were performed by a trained neurol-

ogist with experience in neuroimaging, not aware of the automated

segmentation results.

2.3 | Segmentation algorithm

Segmentation was done using multi-dimensional gated recurrent units

(MD-GRU; Andermatt et al., 2016), adopting the network architecture

from Andermatt et al. (2018). In brief, MD-GRU is a deep learning-

based, fully-automated semantic segmentation approach employing a

convolutional adaptation of gated recurrent units (GRU; Cho et al.,

2014). Each MD-GRU layer traverses an image forward and backward

along each of its spatial dimensions to infer the current segmentation

class label from the local appearance and its surrounding context.

As a preprocessing step, images were filtered with a high-pass fil-

ter as described in Andermatt et al. (2016), the result of which was

passed to the network as an additional input channel. Blocks of

80 × 80 × 80 voxels were sampled from training images allowing a

sampling of 10 voxels beyond the image boundaries with zero-pad-

ding. Data augmentation with random deformations (grid spacing 64,

deformation vector components sampled from N(0,3) [Andermatt

et al., 2016], small rotations (±10�) and scaling (±10%) was used to

increase the size of the training data set. To prevent overfitting,

DropConnect was performed on input and previous state with a keep

rate of 0.5, multiplying the weights with a Gaussian random variable

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014).

Selective sampling and residual learning on the MD-GRU level were

applied as described in Andermatt et al. (2018).

The respective neural network was trained for 100,000 iterations,

using AdaDelta (Zeiler, 2012), on the training data set described

above. For the final 40,000 iterations, the training state of the net-

work was evaluated every 3,000 iterations against the refinement

data set described above, and the state scoring the highest mean Dice

score across all labeled subregions of the BS in all refinement images

was chosen for further use in our experiments. To segment unseen

data with the trained network in our experiments, each image was

regularly subdivided into blocks of 80 × 80 × 80 voxels with an over-

lap of 10 voxels in each dimension. The blockwise segmentation

results were then stitched together into the original image size.

2.4 | Accuracy analysis

The accuracy of the automated segmentation was assessed by two

different approaches. First, a comparison of exclusively manual BS

segmentations with MD-GRU and FreeSurfer segmentations was

done in a data set of 20 MS patients that were not part of the algo-

rithm training and refinement (accuracy data set, manual segmen-

tations) to enable a comparison between the two automated

segmentation methods with an independently generated gold stan-

dard. Second, we compared the MD-GRU segmentations with

expert-labeled manually edited and FreeSurfer BS segmentations in

another larger dataset from 80 MS patients, also independent from the

algorithm training and refinement (accuracy data set, manually edited seg-

mentations). All MD-GRU segmentations were visually inspected and

considered successful. Then Dice coefficients and mean surface distances

(MSD) were each calculated for total BS volumes, M, P, and MO volumes.

Pearson correlation was used to assess the association between

MD-GRU calculated BS volumes and manually edited segmented vol-

umes. In addition, Bland–Altman plots were created to graphically

compare the two BS segmentation approaches by plotting the differ-

ence between corresponding measurements obtained by the two seg-

mentation methods against their averages.

2.5 | Reproducibility analysis

The reproducibility of the MD-GRU segmentations was assessed in

33 healthy subjects that underwent a MR test–retest experiment being

scanned twice in the same session after repositioning, 11 subjects at

1.5 T, and 22 subjects at 3 T as described above. All segmentations

were visually inspected and considered successful and anatomically

adequate. Reproducibility of the BS volumes was assessed as percent

change between test and retest scans. The mean difference and mean

percentage change between test and retest and the respective ICCs

(two-way random, absolute agreement) were calculated.

2.6 | Robustness analysis

By applying the algorithm on multicentric acquired MPRAGE images

of 50 AD patients, we further tested the robustness of the novel

method in a more diverse dataset including different acquisition plat-

forms. Again, all MD-GRU segmentations were visually controlled and

TABLE 1A Mean Dice scores comparing MD-GRU and FreeSurfer segmentations to the manual gold standard in 20 MS patients

Mean Dice score/SD/95%CI comparing
MD-GRU vs. manual
segmentations

Mean Dice score/SD/95%CI
comparing FreeSurfer vs. manual segmentations

Brainstem 0.94/0.010/0.937–0.945 0.93/0.010/0.926–0.935

Mesencephalon 0.87/0.024/0.864–0.884 0.87/0.029/0.852–0.876

Pons 0.93/0.011/0.927–0.936 0.93/0.011/0.920–0.931

Medulla oblongata 0.92/0.015/0.912–0.924 0.89/0.022/0.876–0.894

Note: Mean Dice scores and SD for the total brainstem, mesencephalon, pons, and medulla oblongata comparing exclusively manual segmentations to

MD-GRU and FreeSurfer (Iglesias et al., 2015) segmentations.

SANDER ET AL. 4095



considered anatomically adequate. Dice coefficients and MSD com-

paring automated to manually edited and FreeSurfer segmentations

were calculated.

Statistical analysis was performed using SPSS 22 and JMP Pro 14.1.

3 | RESULTS

3.1 | Accuracy

For validation, we compared exclusively manual segmentations, as inde-

pendent gold standard, to MD-GRU and FreeSurfer segmentations in a

separate accuracy dataset characterized above that was not used during

the development of the segmentation approach.

Dice scores for the MD-GRU-manual segmentation comparison

(mean Dice score/SD/95%CI 0.94/0.01/0.937–0.945) were slightly

but significantly higher than for the FreeSurfer-manual segmentation

comparison (0.93/0.01/0.926–0.935), p < .001. The corresponding

Dice scores for all substructures can be found in Table 1a.

In the second, independent larger data set of MS patients, MD-GRU

total BS volumes were highly correlated with independently manually

edited volumes (R2 = 0.99) (Figure 3a and Figure 3b). The mean Dice

scores and MSD comparing the MD-GRU to the manually edited and

FreeSurfer segmentations are shown in Tables 1b and 1c. The mean Dice

scores comparing the MD-GRU to the manually edited segmentations

were 0.97 for the total BS, 0.95 for the mesencephalon, 0.98 for the

F IGURE 3A Association between manually edited segmentations and MD-GRU segmentations for the total brainstem and its substructures
mesencephalon, pons and medulla oblongata (n = 80) [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 3B Bland–Altman plots showing the absolute differences between manually edited and MD-GRU based segmentations plotted
against their averages. The dashed lines indicate the limits of agreement (mean+/−1.96 SD), (n = 80)

TABLE 1B Mean Dice scores comparing MD-GRU
segmentations to manually edited and FreeSurfer segmentations in 80
MS patients

Mean Dice score/SD

comparing MD-GRU
vs. manually edited
segmentations

Mean Dice score/SD
comparing MD-GRU vs.
FreeSurfer segmentations

Brainstem 0.97/0.005 0.97/0.005

Mesencephalon 0.95/0.013 0.95/0.013

Pons 0.98/0.006 0.97/0.006

Medulla oblongata 0.95/0.015 0.94/0.015

Note: Mean Dice scores and SD for the total brainstem, mesencephalon,

pons, and medulla oblongata comparing segmentations to MD-GRU

versus manually edited and FreeSurfer (Iglesias et al., 2015)

segmentations.

TABLE 1C Mean surface distances (MSD) comparing
segmentation methods in 80 MS patients

MSD [mm]/SD

comparing MD-GRU vs.
manually edited
segmentations

MSD/SD comparing

MD-GRU vs.
FreeSurfer
segmentations

Brainstem 0.24/0.043 0.26/0.04

Mesencephalon 0.30/0.066 0.31/0.065

Pons 0.24/0.051 0.24/0.047

Medulla oblongata 0.27/0.085 0.37/0.083

Note: Mean surface distance (MSD) [mm] and SD for the total brainstem,

mesencephalon, pons and medulla oblongata comparing segmentations

with MD-GRU versus manually edited and FreeSurfer (Iglesias et al., 2015)

segmentations.

SANDER ET AL. 4097



pons and 0.95 for the medulla oblongata. The corresponding MSD were

0.24 mm for the total BS, 0.30 mm for the mesencephalon, 0.24 mm for

the pons and 0.27 mm for the medulla oblongata.

Each MD-GRU-generated segmentation mask was visually

inspected for segmentation errors. Figures 4a and 4b show exemplary

BS segmentations obtained by MD-GRU.

In general, the segmentation quality was high (see Figures 4a and

4b). Please note slightly imprecise segmentations in a minority of cases

without major impact on the respective volumes (see Figure 5). The

MD-GRU generated caudal delimitation of the medulla oblongata was

usually within 1–2 slices above or below the corresponding manually

defined slice of delimitation containing the exit of the first spinal roots.

The mean volumes/SD of the BS and its substructures obtained

by the different segmentation methods are summarized in Table 2.

3.2 | Reproducibility

The results of the test–retest experiment are summarized in Tables 3a

and 3b. In brief, the MD-GRU based mean percent BS volume change

between the two scans was 0.45% (IQR = 0.42, SD 0.005). For the

F IGURE 4A Comparison of MD-GRU and manually edited segmentations of 30 exemplary subjects in the accuracy data set (n = 80) and
corresponding Dice scores for total brainstem volumes [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Mean volumes of the brainstem and its substructures in 80 MS patients

FreeSurfer Manually edited segmentations MD-GRU

Mean volume [mm3] SD Mean volume [mm3] SD Mean volume [mm3] SD

Brainstem 24,246.86 3,041.96 24,250.25 3,046.03 24,418.10 3,164.43

Mesencephalon 5,803.48 603.40 5,799.21 609.89 5,910.43 613.95

Pons 14,005.89 2,084.54 13,994.06 2,085.17 14,081.53 2,213.21

Medulla oblongata 4,437.50 541.35 4,456.98 531.86 4,426.15 536.38

Note: Mean brainstem and brainstem substructure volumes, obtained by the different segmentation methods with FreeSurfer (Iglesias et al., 2015),

manually edited segmentations and MD-GRU.
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1.5 T data (n = 11), the BS volume change/SD was 0.48%/0.004, for

the 3 T data (n = 22) 0.43%/0.006.

The corresponding ICC for the MD-GRU based test–retest BS, M,

and P volumes were all >0.99, of MO volumes 0.972.

Figure 6 shows exemplary segmentations of the 11 scan-rescans

obtained from the 1.5 T Avanto scanner and corresponding mean per-

centage changes for total BS volumes.

3.3 | Robustness

For the multicentric data of 50 AD patients, the mean Dice scores/SD

and MSD comparing the MD-GRU to the manually edited and

FreeSurfer segmentations are shown in Tables 4a and 4b. The mean

Dice scores comparing the MD-GRU to the manually edited segmen-

tations were 0.97 for the total BS, 0.94 for the mesencephalon, 0.97

F IGURE 4B Exemplary axial
and coronal views of the
brainstem MD-GRU
segmentations [Color figure can
be viewed at
wileyonlinelibrary.com]

F IGURE 5 Example of random imprecise segmentations of the segmentation algorithm MD-GRU. (a) Missing voxels in the ponto-
mesencephalic junction. (b) Segmented voxels in the pineal gland
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for the pons and 0.94 for the medulla oblongata. The corresponding

MSD were 0.28 mm for the total BS and pons, and 0.33 mm for the

mesencephalon and medulla oblongata.

4 | DISCUSSION

The segmentation approach MD-GRU presented in this paper pro-

vides accurate, highly reproducible, and robust fully-automated deep

learning-based segmentations of the BS and its substructures in HC

and patients with MS and AD.

Compared to manually edited segmentations, MD-GRU reduces

sources of error by operator-dependent factors like intra- or

interexpert variability. The use of an automatic segmentation

method ensures the use of a consistent anatomical border definition

as determined by the manually segmented BS templates during

training. MD-GRU also dramatically reduces analysis time. With an

application time of about 200 s/scan on Nvidia GeForce GTX 1080

GPU, it is not only faster than manual segmentations but also faster

than the automated BS segmentation with FreeSurfer requiring

15 min per data set (Iglesias et al., 2015), allowing effective applica-

tion in large datasets.

Comparing the novel segmentation approach MD-GRU to the

manual gold standard segmentations yielded very high Dice scores

indicating a high anatomic accuracy of the method. Visual inspection

TABLE 3A Mean percentage volume change between test- and retest scans

FreeSurfer Manually edited segmentations MD-GRU

Mean % volume change SD Mean % volume change SD Mean % volume change SD

Brainstem 0.95 0.009 0.86 0.007 0.45 0.005

Mesencephalon 1.57 0.017 1.65 0.016 0.63 0.006

Pons 0.60 0.005 0.59 0.005 0.35 0.003

Medulla oblongata 3.42 0.028 2.70 0.020 1.47 0.025

Note: Mean percentage brainstem volume change between test- and retest scans and SD for segmentations performed with FreeSurfer (Iglesias et al.,

2015), manually edited and with the novel segmentation approach MD-GRU, 33 healthy subjects.

TABLE 3B Intraclass correlation coefficient for test–retest segmentations

FreeSurfer Manually edited segmentations MD-GRU

ICC 95%CI ICC 95%CI ICC 95%CI

Brainstem >0.99 0.987–0.998 >0.99 0.991–0.998 >0.99 0.996–0.999

Mesencephalon 0.975 0.951–0.988 0.976 0.953–0.988 >0.99 0.993–0.998

Pons >0.99 0.996–0.999 >0.99 0.996–0.999 >0.99 0.999–1

Medulla oblongata 0.923 0.850–0.961 0.946 0.895–0.973 0.972 0.941–0.987

Note: Intraclass correlation coefficients (ICC; two-way random, absolute agreement) and 95% confidence intervals (CI) for test–retest segmentations

performed with FreeSurfer (Iglesias et al., 2015), manually edited and with the novel segmentation approach MD-GRU, 33 healthy subjects.

F IGURE 6 MD-GRU segmentations of the eleven 1.5 T scan-rescan experiments and corresponding mean percentage changes for total BS
volumes. Please note one outlier with 1.62% BS volume change between the two scans, associated with a pronounced anteversion of the
brainstem axis of this subject compared to the other subjects
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of each MD-GRU generated segmentation mask confirmed precise

segmentation even of the most error-prone regions that is, the caudal bor-

der of MO and the occipital ponto-medullar transition with MD-GRU,

both in healthy controls and in patients with MS and AD. Compared to

the manual segmentations, however, MD-GRU tended to slightly over-

segment the BS (0.69% for total BS volume compared to manually edited

segmentations). The reason for this might lie in our use of selective sam-

pling during training: with selective sampling, we ensured that each second

training sample block contained at least one BS voxel, to handle class

imbalance between BS and non-BS voxels. This, in turn, might have caused

a slight bias in the network to assume voxels as belonging to the

BS. Other methods for handling class imbalance, such as integrating Dice

loss in the MD-GRU training (Horvath et al., 2018), might be used to miti-

gate this effect in a future version of our network. Comparing MD-GRU

and FreeSurfer based BS segmentations against the manual gold standard

indicated a superior accuracy of the segmentations based on MD-GRU

compared to FreeSurfer.

A recent study by Velasco-Annis et al. (2018) compared three

originally for brain segmentation designed, automated BS segmenta-

tion methods (FSL-FIRST (Patenaude et al., 2011), PSTAPLE (Akhondi-

Asl & Warfield, 2013), FreeSurfer (Fischl et al., 2002; Fischl et al.,

2004; Iglesias et al., 2015) and reported highest reproducibility of BS

segmentations performed by FreeSurfer.

Compared to FreeSurfer and to manually edited segmentations, MD-

GRU segmentations of all three BS substructures and of the total BS

showed consistently lower variability between test- and retest scans.

Three scan pairs showed a relatively high percent volume change of

1.62, 2.44, and 1.26% between scans, most likely due to either anatomi-

cally pronounced anteversion of the BS compared to all other subjects in

the first and poor MR image quality due to motion artifacts in the two

others. In the remaining, variability ranged between 0.008 and 0.85% BS

volume change between test–retest scans.

In particular, the MD-GRU segmentation approach showed improved

reproducibility in the anatomically most challenging region of the BS—

the medulla oblongata. Despite relatively high reproducibility compared

to other available techniques in earlier studies (Velasco-Annis et al.,

2018), FreeSurfer segmentations can present inconsistencies especially

in the caudal part of the MO. In this part, as well as in the region at or

below the level of the central canal entry into the medulla, the differ-

ences between medulla and CSF tissue characteristics may lead to ana-

tomically incorrect segmentations. In the manually edited segmentations

that were used for training MD-GRU, a continuous, anatomically correct

segmentation around and caudal of the central canal was taken account

of with the first spinal root pair as anatomic definition of the caudal

delimitation of the medulla. As the first nerve root often exits the

medulla in several branches we defined the most cranial axial slice in

which both (left and right) first nerve roots were both visible as caudal

delimitation of the medulla oblongata.

The MD-GRU generated caudal delimitation of the medulla

oblongata was usually within 1–2 slices above or below the

corresponding manually defined slice of delimitation containing the

exit of the first spinal roots.

In this study, the algorithm was trained on MRI data obtained from

a single 1.5 T scanner. However, MD-GRU segmentation reproducibil-

ity was shown to be high also for 3 T data.

The robustness of our method was further assessed in a multi-cen-

tric, multi-scanner AD dataset. Taken together with our own data, the

high Dice scores comparing MD-GRU to manually edited segmentations

highlight the applicability and anatomic accuracy of our method in both

1.5 and 3 T settings with different acquisition platforms.

The functional importance for vital functions, the frequent and clini-

cally relevant involvement of the BS or its substructures in neurodegen-

erative diseases, and the sensitivity to volume changes (Liptak et al.,

2008) render the BS and its substructures' volumes a potentially attrac-

tive biomarker candidate for neurodegeneration and a potential endpoint

candidate for clinical trials. As a further development of our work, we are

currently planning to evaluate the clinical importance of BS atrophy in

MS and other neurodegenerative diseases with BS involvement.

5 | CONCLUSIONS

This fully automated BS segmentation method provides anatomically

accurate, highly reproducible BS segmentations in HC and patients with

TABLE 4A Mean Dice scores comparing segmentation methods
in 50 AD patients

Mean Dice score/SD
comparing MD-GRU vs.
manually edited

segmentations

Mean Dice score/SD
comparing MD-GRU
vs. FreeSurfer

segmentations

Brainstem 0.97/0.006 0.97/0.007

Mesencephalon 0.94/0.017 0.94/0.017

Pons 0.97/0.004 0.97/0.004

Medulla

oblongata

0.94/0.021 0.93/0.045

Note: Mean Dice scores and SD for the total brainstem, mesencephalon,

pons, and medulla oblongata comparing segmentations with MD-GRU

versus manually edited and FreeSurfer (Iglesias et al., 2015)

segmentations.

TABLE 4B Mean surface distances (MSD) comparing
segmentation methods in 50 AD patients

MSD [mm]/SD
comparing MD-GRU
vs. manually edited
segmentations

MSD/SD comparing
MD-GRU vs. FreeSurfer
segmentations

Brainstem 0.28/0.065 0.30/0.090

Mesencephalon 0.33/0.083 0.34/0.085

Pons 0.28/0.042 0.28/0.038

Medulla oblongata 0.33/0.152 0.43/0.090

Note: Mean surface distance (MSD) (mm) and SD for the total brainstem,

mesencephalon, pons, and medulla oblongata comparing segmentations

with MD-GRU versus manually edited and FreeSurfer (Iglesias et al., 2015)

segmentations.
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MS in 200 s/scan on an Nvidia GeForce GTX 1080 GPU and shows

high potential for application in large datasets and longitudinal studies.

ACKNOWLEDGMENTS

Data collection and sharing for the robustness experiment was funded

by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National

Institutes of Health Grant U01 AG024904) and DOD ADNI

(Department of Defense award number W81XWH-12-2-0012). ADNI

is funded by the National Institute on Aging, the National Institute of

Biomedical Imaging and Bioengineering, and through generous contri-

butions from the following: AbbVie, Alzheimer's Association;

Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica,

Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate;

Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun;

F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.;

Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunother-

apy Research & Development, LLC.; Johnson & Johnson Pharmaceuti-

cal Research & Development LLC.; Lumosity; Lundbeck; Merck & Co.,

Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack

Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.;

Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transi-

tion Therapeutics. The Canadian Institutes of Health Research is pro-

viding funds to support ADNI clinical sites in Canada. Private sector

contributions are facilitated by the Foundation for the National Insti-

tutes of Health (www.fnih.org). The grantee organization is the North-

ern California Institute for Research and Education, and the study is

coordinated by the Alzheimer's Therapeutic Research Institute at the

University of Southern California. ADNI data are disseminated by the

Laboratory for Neuro Imaging at the University of Southern California.

DECLARATION OF INTEREST

Sander L: nothing to disclose. Pezold S holds a grant by the Novartis

Research Foundation. Andermatt S, Amann M, Meier D, Wendebourg

MJ: nothing to disclose. Sinnecker T has received travel support from

Actelion and Roche, and speaker fees from Biogen. Naegelin Y,

Granziera C: nothing to disclose. Kappos L: Ludwig Kappos' Institution

(University Hospital Basel) received in the last 3 years and used exclu-

sively for research support at the Department: steering committee,

advisory board, and consultancy fees from Actelion, Almirall, Bayer,

Biogen, Celgene/Receptos, df-mp, Excemed, Genzyme, Japan

Tobacco, Merck, Minoryx, Mitsubishi Pharma, Novartis, Roche, sanofi-

aventis, Santhera, Teva, Vianex and royalties for Neurostatus-UHB

products. For educational activities the institution received payments

and honoraria from Allergan, Almirall, Baxalta, Bayer, Biogen, CSL-

Behring, Desitin, Excemed, Genzyme, Merck, Novartis, Pfizer, Roche,

Sanofi-Aventis, Teva. Wuerfel J: CEO of MIAC AG Basel, Switzerland.

He served on scientific advisory boards of Actelion, Biogen,

Genzyme-Sanofi, Novartis, and Roche. He is or was supported by

grants of the EU (Horizon2020), German Federal Ministeries of Edu-

cation and Research (BMBF) and of Economic Affairs and Energy

(BMWI). Cattin P: nothing to disclose. Schlaeger R is supported by

the Swiss National Science Foundation (MHV program, PMPDP3

171391), the University of Basel, and the Swiss MS Society.

ORCID

Regina Schlaeger https://orcid.org/0000-0003-2056-5765

REFERENCES

Akhondi-Asl, A., & Warfield, S. K. (2013). Simultaneous truth and perfor-

mance level estimation through fusion of probabilistic segmentations.

IEEE Transactions on Medical Imaging, 32(10), 1840–1852. https://doi.

org/10.1109/TMI.2013.2266258

Andermatt, S., Pezold, S., & Cattin, P. C. (2016). Multi-dimensional gated

recurrent units for the segmentation of biomedical 3D-data. In

G. Carneiro et al. (Eds.), Deep Learning and Data Labeling for Medical

Applications. DLMIA 2016, LABELS 2016. Lecture Notes in Computer Sci-

ence (Vol 10008). Cham: Springer. https://doi.org/10.1007/978-3-

319-46976-8_15

Andermatt, S., Pezold, S., & Cattin, P. C. (2018). Automated segmentation

of multiple sclerosis lesions using multi-dimensional gated recurrent

units. In A. Crimi, S. Bakas, H. Kuijf, B. Menze, & M. Reyes (Eds.),

Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries.

BrainLes 2017. Lecture notes in computer science (p. 10670). Cham:

Springer. https://doi.org/10.1007/978-3-319-75238-9_3

Bendfeldt, K., Kuster, P., Traud, S., Egger, H., Winklhofer, S., Mueller-

Lenke, N., … Borgwardt, S. J. (2009). Association of regional gray mat-

ter volume loss and progression of white matter lesions in multiple

sclerosis - a longitudinal voxel-based morphometry study. NeuroImage,

45(1), 60–67. https://doi.org/10.1016/j.neuroimage.2008.10.006

Cho K., van Merrienboer B., Gulcehre C., Bahdanau D., Bougares F.,

Schwenk H. , & Bengio Y. (2014). Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv:

1406.1078

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., …
Dale, A. M. (2002). Whole brain segmentation: Automated labeling of

neuroanatomical structures in the human brain. Neuron, 33(3),

341–355.
Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Ségonne, F.,

Quinn, B. T., & Dale, A. M. (2004). Sequence-independent segmenta-

tion of magnetic resonance images. NeuroImage, 23(Suppl 1),

S69–S84.
Ghorayeb, I., Yekhlef, F., Chrysostome, V., Balestre, E., Bioulac, B., &

Tison, F. (2002). Sleep disorders and their determinants in multiple

system atrophy. Journal of Neurology, Neurosurgery, and Psychiatry, 72

(6), 798–800.
Grinberg, L. T., Rueb, U., Alho, A. T., & Heinsen, H. (2010). Brainstem

pathology and non-motor symptoms in PD. Journal of the Neurological

Sciences, 289(1–2), 81–88. https://doi.org/10.1016/j.jns.2009.08.021
Grinberg, L. T., Rueb, U., Ferretti, R. E., Nitrini, R., Farfel, J. M., Polichiso, L.,

… Heinsen, H. (2009). The dorsal raphe nucleus shows phospho-tau

neurofibrillary changes before the transentorhinal region in

Alzheimer's disease. A precocious onset? Neuropathology and Applied

Neurobiology, 35(4), 406–416.
Herlihy, A. H., Hajnal, J. V., Curati, W. L., Virji, N., Oatridge, A.,

Puri, B. K., & Bydder, G. M. (2001). Reduction of CSF and blood flow

artifacts on FLAIR images of the brain with k-space reordered by

inversion time at each slice position (KRISP). American Journal of Neu-

roradiology, 22(5), 896–904.
Horvath A. , Tsagkas C. , Andermatt S. , Pezold S. , Parmar K. , & Cattin P.

(2018). Spinal cord gray matter-white matter segmentation on mag-

netic resonance AMIRA images with MD-GRU. arXiv:1808.02408.

4102 SANDER ET AL.

http://www.fnih.org
https://orcid.org/0000-0003-2056-5765
https://orcid.org/0000-0003-2056-5765
https://doi.org/10.1109/TMI.2013.2266258
https://doi.org/10.1109/TMI.2013.2266258
https://doi.org/10.1007/978-3-319-46976-8_15
https://doi.org/10.1007/978-3-319-46976-8_15
https://doi.org/10.1007/978-3-319-75238-9_3
https://doi.org/10.1016/j.neuroimage.2008.10.006
https://doi.org/10.1016/j.jns.2009.08.021


Iglesias, J. E., van Leemput, K., Bhatt, P., Casillas, C., Dutt, S., Schuff, N., …
Fischl, B. (2015). Bayesian segmentation of brainstem structures in

MRI. NeuroImage, 113, 184–195. https://doi.org/10.1016/j.

neuroimage.2015.02.065

Keshavan, A., Paul, F., Beyer, M. K., Zhu, A. H., Papinutto, N.,

Shinohara, R. T., … Henry, R. G. (2016). Power estimation for non-

standardized multisite studies. NeuroImage, 134, 281–294. https://doi.
org/10.1016/j.neuroimage.2016.03.051

Kim, Y., Kim, Y. E., Park, E. O., Shin, C. W., Kim, H. J., & Jeon, B. (2018).

REM sleep behavior disorder portends poor prognosis in Parkinson's

disease: A systematic review. Journal of Clinical Neuroscience, 47,

6–13. https://doi.org/10.1016/j.jocn.2017.09.019
Liptak, Z., Berger, A. M., Sampat, M. P., Charil, A., Felsovalyi, O.,

Healy, B. C., … Guttmann, C. R. (2008). Medulla oblongata volume: A

biomarker of spinal cord damage and disability in multiple sclerosis.

American Journal of Neuroradiology, 29(8), 1465–1470. https://doi.org/
10.3174/ajnr.A1162

McDonald, W. I., Compston, A., Edan, G., Goodkin, D., Hartung, H. P.,

Lublin, F. D., … Wolinsky, J. S. (2001). Recommended diagnostic

criteria for multiple sclerosis: Guidelines from the international panel

on the diagnosis of multiple sclerosis. Annals of Neurology, 50(1),

121–127.
Naidich, T. P., Duvernoy, H. M., Delman, B. N., Sorensen, A. G.,

Kollias, S. S., & Haacke, E. M. (2009). Duvernoy`s atlas of the human

brain stem and cerebellum (p. 54). Wien New York: Springer.

Nieuwenhuys, R. (1985). Chemoarchitecture of the brain. Berlin Heidelberg

New York Tokyo: Springer.

Noseworthy, J. H., Lucchinetti, C., Rodriguez, M., & Weinshenker, B. G.

(2000). Multiple sclerosis. New England Journal of Medicine, 343(13),

938–952.
Patenaude, B., Smith, S. M., Kennedy, D. N., & Jenkinson, M. (2011). A

Bayesian model of shape and appearance for subcortical brain seg-

mentation. NeuroImage, 56(3), 907–922. https://doi.org/10.1016/j.

neuroimage.2011.02.046

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.

(2014). Dropout: A simple way to prevent neural networks from over-

fitting. The Journal of Machine Learning Research, 15(1), 1929–1958.
Tanaka, N., Abe, T., Kojima, K., Nishimura, H., & Hayabuchi, N. (2000).

Applicability and advantages of flow artifact-insensitive fluid-

attenuated inversion-recovery MR sequences for imaging the poste-

rior fossa. American Journal of Neuroradiology, 21(6), 1095–1098.
Velasco-Annis, C., Akhondi-Asl, A., Stamm, A., & Warfield, S. K. (2018).

Reproducibility of brain MRI segmentation algorithms: Empirical

comparison of local MAP PSTAPLE, FreeSurfer, and FSL-FIRST.

Journal of Neuroimaging, 28(2), 162–172. https://doi.org/10.1111/
jon.12483

Wang, J. Y., Ngo, M. M., Hessl, D., Hagerman, R. J., & Rivera, S. M. (2016).

Robust machine learning-based correction on automatic segmentation

of the cerebellum and brainstem. PLoS ONE, 11(5), e0156123. https://

doi.org/10.1371/journal.pone.0156123

Warabi, Y., Hayashi, K., Nagao, M., & Shimizu, T. (2017). Marked wide-

spread atrophy of the cerebral cortex and brainstem in sporadic

amyotrophic lateral sclerosis in a totally locked-in state. British Med-

ical Journal Case Reports. pii: bcr2016218952. https://doi.org/10.

1136/bcr-2016-218952

Weier, K., Penner, I. K., Magon, S., Amann, M., Naegelin, Y., Andelova, M.,

… Sprenger, T. (2014). Cerebellar abnormalities contribute to disability

including cognitive impairment in multiple sclerosis. PLoS ONE, 9(1),

e86916. https://doi.org/10.1371/journal.pone.0086916

Williams, D. R., & Lees, A. J. (2009). Progressive supranuclear palsy: Clini-

copathological concepts and diagnostic challenges. Lancet Neurology, 8

(3), 270–279. https://doi.org/10.1016/S1474-4422(09)70042-0
Zeiler M.D. (2012). ADADELTA: An adaptive learning rate method. arXiv:

1212.5701.

How to cite this article: Sander L, Pezold S, Andermatt S,

et al. Accurate, rapid and reliable, fully automated MRI

brainstem segmentation for application in multiple sclerosis

and neurodegenerative diseases. Hum Brain Mapp. 2019;40:

4091–4104. https://doi.org/10.1002/hbm.24687

APPENDIX

A. GUIDELINES USED IN THE MANUALLY EDITED

SEGMENTATIONS OF THE MESENCEPHALON, PONS,

AND MEDULLA OBLONGATA BASED ON FREESURFER

PRESEGMENTATIONS

Segmentations were performed mainly in the axial and sagittal plane

and were visually controlled in the coronal plane.

1. In axial and sagittal view, the anatomically correct cranial limita-

tions of the midbrain toward the epiphysis was traced.

2. For the medullo-pontine transition, the presegmented transition

zone was followed occipitally to the most superior axial slice;

presegmented voxels of the MO cranial of this slice were

deleted.

3. For caudal delineation of the MO, the most cranial axial slice was

identified in which both (left and right) first nerve roots were both

visible (see Figure 2).

4. Segmentation irregularities were visually controlled in all three

planes. Missing voxels inside the anatomically defined substruc-

tures were added. Presegmented voxels outside the BS, in particu-

lar in the cerebellum, pendunculus cerebelli superior or pineal

gland, were deleted.

B. GUIDELINES USED IN THE MANUAL SEGMENTATIONS

OF THE MESENCEPHALON, PONS, AND MEDULLA

OBLONGATA

1. For caudal delineation of the MO, the most cranial axial slice was

identified in which the left and right first nerve roots were both

visible (see Figure 2).

2. For cranial delimitation of the MO, in the midsagittal view, the

pontomedullary sulcus (see Figure 2) was identified and followed

in both directions.

3. For cranial delimitation of the pons, in the midsagittal plane, the

ponto-mesencephalic junction was identified with posterior delim-

itation below the quadriminal plate (see Figure 2). Segmenting was

continued toward more lateral planes. In sagittal and axial slices,

the upper anterior delimitation was set below the exit of the third

cranial nerve. The separation between mesencephalon and pons

was continued from lateral toward median slices.
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4. In axial and sagittal view (see Figure 2), the anatomically correct

cranial limitations of the midbrain toward the pineal gland was

segmented with no segmented voxels above the superior

colliculus. In sagittal slices, the anterior delineation was marked

posterior of the mammillary bodies on both sides.

5. Segmentation irregularities were visually controlled in all three

planes with respect to the anatomical contrasts.

C. MANUALLY EDITED SEGMENTATION

The intra-class correlation coefficients (two-way random, absolute

agreement) ICC/95%CI of inter-rater reliability of the manual segmen-

tation of the BS and its substructures M and p was >0.99/1.0, for MO

0.998/0.992–0.999.

The COV of the BS substructures were: COVM = 0.035%,

COVP = 0.068%, COVMO = 0.495%.
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